ECUACIONES DE TRANSFERENCIA DE MASA POR CONVECCIÓN

Adaptado principalmente de Welty, Wicks y Wilson, "Fundamentos de Transferencia de Momento, Calor y Masa", Limusa.

FASE GASEOSA						
Fuerza impulsora	Densidad de flujo molar de A		Unidades del coeficiente de			
	DUM	CDEM	transferencia de masa			
Diferencia de presión parcial ($\Delta P_{\!\scriptscriptstyle A}$)	$n_A = k_G \Delta P_A$	$n_A = k_G^0 \Delta P_A$	moles transferidos de A (presión)(área)(tiempo)			
Diferencia de concentración ($\Delta \mathcal{C}_{A}$)	$n_A = k_C \Delta C_A$	$n_A = k_C^0 \Delta C_A$	moles transferidos de A (moles de A/volumen)(área)(tiempo)			
Diferencia de fracción mol (Δy_A)	$n_A = k_y \Delta y_A$	$n_A = k_y^0 \Delta y_A$	moles transferidos de A (moles de A/moles totales)(área)(tiempo)			
Conversiones entre coeficientes de transferencia de masa para la fase gaseosa						
$k_y^0 = k_G^0 P = k_C^0 \frac{P}{RT} = k_y \frac{P_{B,ml}}{P} = k_G P_{B,ml} = k_C \frac{P_{B,ml}}{RT}$						
Media logarítmica de la presión parcial de	(in): $P_{B,ml} = \frac{P_{B,G} - P_{B,i}}{\ln(P_{B,G} / P_{B,i})}$					
Para presiones parciales de A pequeñas ($P_{B, ml} \approx \frac{P_{B, G} + P_{B, i}}{2}$					
Para presiones parciales de A muy pequei	$P_{B, ml} \approx P$					

FASE LÍQUIDA						
Fuerza impulsora	Densidad de flujo molar de A		Unidades del coeficiente de			
	DUM	CDEM	t	transferencia de masa		
Diferencia de concentración ($\Delta \mathcal{C}_{\scriptscriptstyle A}$)	$n_A = k_L \Delta C_A$	$n_A = k_L^0 \Delta C_A$	(n	moles transferidos de A (moles de A/volumen)(área)(tiempo)		
Diferencia de fracción mol (Δx_A)	$n_A = k_x \Delta x_A$	$n_A = k_x^0 \Delta x_A$	moles transferidos de A (moles de A/moles totales)(área)(tiempo)			
Conversiones entre coeficientes de transferencia de masa para la fase líquida $k_x^0 = k_L^0 C = k_x x_{B,ml} = k_L x_{B,ml} C$						
Media logarítmica de la fracción mol del	$x_{B,ml} = \frac{x_{B,L} - x_{B,i}}{\ln(x_{B,L} / x_{B,i})}$					
Para fracciones mol de A pequeñas (para sistema diluido):				$X_{B, ml} \approx \frac{X_{B, L} + X_{B, i}}{2}$		
Para fracciones mol de A muy pequeñas (para sistema muy diluido):				$X_{B, ml} \approx 1$		

NOTACIÓN: A y B son los componentes del sistema binario o pseudo-binario, donde A es el componente de interés y B es el acarreador o solvente (dependiendo del tipo de fase). Los subíndices G y L se refieren a la fase gaseosa y líquida, respectivamente, y el subíndice i se refiere a la interfase donde está ocurriendo la transferencia de masa por convección. En sistemas binarios $P_A + P_B = P$ y $X_A + X_B = 1$. El superíndice O se usa para indicar contradifusión equimolar, ya que en este caso la velocidad promedio molar es cero. Las diferencias de presión parcial, concentración o fracción mol se toman entre la interfase y el fluido lejos de la interfase.